Collaborative Holographic Universe Simulation

Explore quantum circuits and holographic frameworks together in real-time

Connected Users

Quantum Circuit Setup

# Define a quantum register and circuit
qr = QuantumRegister(3, 'q')
cr = ClassicalRegister(3, 'c')
qc = QuantumCircuit(qr, cr)

# Apply Hadamard gates to create superposition
for i in range(qr.size()):
    qc.h(qr[i])

# Apply CNOT gate to entangle qubits
qc.cx(qr[0], qr[1])

# Measure all qubits
qc.measure(qr, cr)
Entanglement Measure
0.82
Coherence
0.65

Holographic Environment Setup

# Define environment variables (2-bit representations)
t = 0b01  # Planck time (scaled)
s = 0b10  # Scale of space
m = 0b11  # Simplified number of atoms
d = 0b01  # Number of dimensions

# Concatenate to form 8-bit environment label
env_label = f"{t:02b}{s:02b}{m:02b}{d:02b}"

# Create environment state vector
env_state = Statevector.from_label(env_label)
Environment Label
01101101
State Complexity
3.14

Analysis and Results

Mean Count
128.00
Variance
42.56
State Fidelity
0.78
Quantum Entropy
1.23